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Definition

[Robot learning| consists of a multitude of machine learning approaches, par-
ticularly reinforcement learning| [inverse reinforcement learningl and
methods, that have been adapted sufficiently to domain so that
they allow learning in complex robot systems such as helicopters, flapping-wing
flight, legged robots, anthropomorphic arms and humanoid robots. While clas-
sical artificial intelligence-based robotics approaches have often attempted to
manually generate a set of rules and models that allows the robot systems to
sense and act in the real-world, robot learning| centers around the idea that
it is unlikely that we can foresee all interesting real-world situations sufficiently
accurate. Hence, the field of robot Iearning] assumes that future robots need
to be able to adapt to the real-world, and domain-appropriate machine learning
might offer the most approach in this direction.

Robot Learning Systems

As learning has found many backdoor entrances to robotics, this section can
only scratch the surface. However, robot learning has clearly been successful in
several areas: (i) Model Learning, (ii) Imitation and Apprenticeship Learning,
(iii) Reinforcement Learning as well as in various other topics.

Model Learning

Model learning is the machine learning counterpart to classical system iden-
tification [2, 6]. However, while the classical approaches heavily relies on the
structure of physically-based models, specification of the relevant state variables
and hand-tuned approximations of unknown nonlinearities, model learning ap-
proaches avoid many of these labor-intensive steps and the entire process to be
more easily automated. Machine learning and system identification approaches
often assume an observable state of the system to estimate the mapping from
inputs to outputs of the system. However, a learning system is often able to
learn this mapping including the statistics needed to cope with unidentified
state variables and can hence cope with a larger class of systems. Two types of
models are commonly learned, i.e., forward, and inverse models.

Forward models predict the behavior of the system based either on the cur-
rent state or a history of preceeding observations. They can be viewed as



“learned simulators” that may be used for optimizing a policy or for predict-
ing future information. Examples of the application of such learned simulators
range from the early work in the late 1980s by Atkeson & Schaal in robot arm-
based cartpole swing-ups to Ng’s recent extensions for stabilizing an inverted
helicopter. Most forward models can directly be learned by

Conversely, inverse models attempt to predict the input to a system in or-
der to achieve a desired output in the next step, i.e., it uses the model of the
system to directly generate control signals. In traditional control, these are of-
ten called approximation-based control systems [2]. Inverse model learning can
be straightforwardly by when the system dynamics can be inverted
uniquely, e.g., as in inverse dynamics learning for a fully actuated system. How-
ever, for underactuated or redundantly actuated systems [], operational space
control [3], etc., such a unique inverses do not exist and additional optimization
is needed..

Imitation and Apprenticeship Learning

A key problem in robotics is to ease the problem of programming a complex
behavior. Traditional robot programming approaches rely on accurate, man-
ual, modeling of the task and removal of all uncertainities so that they work
well. In contrast to classical robot programming, learning from demonstration
approaches aim at recovering the instructions directly from a human demon-
stration. Numerous unsolved problems exist in this context such as discovering
the intent of the teacher or determing the mapping from the teacher’s kinemat-
ics to the robot’s kinematics (often called the correspondence problem). Two
different approaches are common in this area, i..e., direct imitation learning and
apprenticeship learning.

In imitation learning [7], also known as|behavioral cloning] the robot sys-
tem directly estimates a policy from a teachers presentation, and, subsequently,
the robot system reproduces the task using this policy. A key advantage of this
approach is that it can often learn a task successfully from few demonstrations.
In areas where human demonstrations are straightforward to obtain, e.g., for
learning racket sports, manipulation, drumming on anthropomorphic systems,
direct imitation learning often proved to be an appropriate approach. Its major
shortcomings are that it cannot explain why the derived policy is a good one
and it may struggle with learning from noisy demonstrations.

Hence, apprenticeship learning [1] has been proposed as an alternative where
a reward function is used as explanation of the teachers’ behaviour. Here, the
reward function is chosen under which the teacher appears to act optimally,
and the optimal policy for this reward function is subsequently computed as a
solution. This approach transforms the problem of learning from demonstra-
tions onto the harder problem of approximate optimal control or reinforcement
learning, hence it is also known as inverse optimal control or
[forcement learning] As a result, it is limited to problems that can be solved
by current reinforcement learning methods. Additionally, it often has a hard
time dealing with tasks where only few demonstrations with low variance exist.




Hence, inverse reinforcement learning has been particularly successful in areas
where it is hard for a human to demonstrate the desired behavior such as for
helicopter acrobatics or in robot locomotion.

Further information on learning by demonstration may be found in [I} [7].

Robot Reinforcement Learning

The ability to self-improve with respect to an arbitrary reward function, i.e.,
reinforcement learning) is essential for robot systems to become more au-
tonomous. Here, the system learns about its policy by interacting with its
environment and receiving scores (i.e, rewards or costs) for the quality of its
performance. Unlike supervised learning approaches used in model learning or
imitation learning, reinforcement learning can still be considered to be in its
infancy. Few off-the-shelf reinforcement learning methods scale into the domain
of robotics both in terms of dimensionality and the number of trials needed
to obtain an interesting behavior. Three different but overlapping styles of re-
inforcement learning can be found in robotics, i.e., model-based reinforcement
learning, [value function approximation|methods, and direct

Model-based reinforcement learning relies upon a learned forward model used
for simulation-based optimization as discussed before. While often highly effi-
cient, it frequently suffers from the fact that learned models are imperfect and,
hence, the optimization method can be guaranteed to be biased by the errors in
the model. To date, a full Bayesian treatment of the model uncertainty appears
to be a promising way for alleviating this shortcoming of this otherwise powerful
approach.

Value function epproximation methods have been the core approach used in
reinforcement learning during the 1990s. These techniques rely upon approxi-
mating the expected rewards for every possible action in every visited state. Sub-
sequently, the controller chooses the actions in accordance to this value. Such
approximation requires a globally consistent value function where the quality of
the policy is determined by the largest error of the value function at any possible
state. As a result, these methods have been problematic for anthropomorphic
robotics as the high-dimensional domains often defy learning such a global con-
struct. However, it has been highly sucessful in low-dimensional domains such
as mobile vehicle control and robot soccer, as well as on well-understood test
domains such as cart-pole systems.

Unlike the previous two approaches, policy search attempts to directly learn
the optimal policy from experience without solving intermediary learning prob-
lems. Policies often have significantly fewer parameters than models or value
functions. For example, for balancing a ball on a plate (where the plate is
mounted on a robot end-effector) optimally with respect to a quadratic reward
function, the number of policy parameters grows linearly in the number state
dimensions while it grows quadratically for both model and value function for
this analytically tractable problem (In general cases, the number of parameters
of value functions grows exponentially in the number of states which is known
as the ‘Curse of Dimensionality’). This insight has given rise to policy search




methods, particularly, [policy gradient methods|and probabilistic approaches
to policy search such as the reward-weighted regression or POWER. To date, ap-
plication results of direct policy search approaches range from gait optimization
in locomotion to various motor learning examples (e.g., Kendama, T-Ball or
throwing darts).

Further information on reinforcement learning for robotics may be found in
[9, [, [5].

Application Domains

The possible application domains for robot learning have not been fully ex-
plored, one could even aggressively state that we have barely started to bring
learning into robotics. Nevertheless, robot learning has been successful in sev-
eral application domains.

For accurate execution of desired trajectories, model learning has scaled
to learning the full inverse dynamics for a humanoid robot in real time more
accurately than achievable with physical models. Current work focusses mainly
on improving the concurrent execution of tasks as well as control of redundant
or underactuated systems.

Various approaches have been successful in task learning. Learning by
demonstration approaches are moving increasingly towards industrial grade so-
lutions where fast training of complex tasks becomes possible. Skills ranging
from motor toys, e.g., basic movements, paddling a ball, etc, to complex tasks
such as cooking a complete meal, basic table tennis strokes, helicopter acro-
batics or footplacement in locomotion have been learned from human teachers.
Reinforcement learning has yielded better gaits in locomotion, jumping behav-
iors for legged robots, perching with fixed wing flight robots, forehands in table
tennis as well as various applications to learning of motor toys.

See Also

reinforcement learning| inverse reinforcement learning| [behavioral cloning]
[policy search| [value function approximation|
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